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APOLLO SPACECRAFT LIQUID PRIMARY PROPULSION SYSTEMS

By Propulsion Analysis Section

GENERAL

The purpose of this document is to provide a general familiariza-
tion with the Apollo spacecraft liquid primary propulsion systems. A
brief discussion of the mission, sngine history, and design philosophy
is presented for the three primary Apollo spacecraft engines, including
the specifications and geometry ol each.

Mission Requirements

The Apollo mission will place three men into lunar orbit, land two
of these men on the lunar surface, and return the three men to earth.
The entire mission will take approximately 8 days and is shown in detail
in figures 1 through 3. The Apollo spacecraft (fig. 4), consisting of
the service module, the command module, and the two-stage lunar excursion
module, contains three primary propulsion systems, which are the subject
of this report.

The service module contains the service propulsion system (SPS)
(fig. 5). The service module engine (fig. 6) has a nominal thrust of
21 500 pounds and .is used for midcourse correction during the translunar
phase, lunar orbit insertion, transearth injection, and midcourse cor-
rection during the transearth phase.

The lunar excursion module (LEM) (figs. 7 through 10) contains the
descent and ascent propulsion systems (DPS and APS). The LEM descent
engine (fig. 11) has a variable thrust capability between 10 500 and
1 050 pounds and provides the thrust for retrofire from lunar orbit and
lunar descent, hover, and landing.

The LEM ascent engine (fig. 12) has a nominal thrust of 3500 pounds
and provides the thrust to place the ascent stage of the LEM into lunar
orbit for rendezvous with the orbiting command and service module.



Design

Philosophy.~ One of the predominant requirements which dictated the
designs of the Apollo engines is crew safety, and, therefore, propulsion
system reliability. To achieve the desired system reliability, the fol-

lowing design features were incorporated in all three Apollo primary pro-
pulsion systems.

1. The propellants are storable at ambient temperature, eliminating
the problems associated with long term storage and venting of cryogenic
propellants in space under zero gravity conditions.

2. The combustion chambers are ablatively cooled because of the
rugged nature of ablatives and their high resistance to sudden failure.

3. The engines are pressure-fed to eliminate complexities asso-
ciated with pump fed engines.

k. Redundant components are used for all moving parts in the engine
pressurization and propellant feed systems. This provides for mission
completion or a safe mission abort if a malfunction occurs in one leg of
a redundant component or in a number of redundant components in the pro-
pulsion system.

Basic features.- The design philosophy and mission requirements of
Apollo have dictated a number of design features which are common to the
three primary spacecraft propulsion systems. All three primary propul-
sion systems (figs. 13, 14 and 15) use ablative thrust chambers, have re-
dundant valves, and are pressure fed. Optimum performance and minimum
weight are basic requirements because of the nature of the Apollo mis-
sion. Large expansion ratio nozzles are used for optimum performance in
the vacuum conditions of space. Relatively low chamber pressure and low
pressure drops through the propellanrt feed system and injector are re-
quired for optimum vehicle efficiency with the pressurized propellant
feed system. The propellants utilized in these systems are earth stor-
able and hypergolic. The fuel is a blended hydrazine (approximately
5C percent unsymmetrical dimethylhydrazine and 50 percent anhydrous hy-
drazine). The oxidizer is nitrogen tetroxide. These propellants provide
the performance necessary to accomplish the Apollo mission and have ac-
ceptable handling and material compatibility characteristics.

To minimize engine weight, the service module and descent engines
have major portions of their nozzles constructed of high temperature
metals (figs. 16 and 17) which are cooled by radiant heat transfer to
space. The entire nozzle of the ascent engine (fig. 18) is constructed



of ablative material because the regquired engine mounting location and
vehicle heat shield configuration does not provide e sufficient view
factor for radiation to spa-e.

The LEM descent engine utilizes a variable area injector and veri-
able area cavitating venturi flow control valves for throttling. The
single-injector and single-fuel and oxidizer-flow control valves are ex-
ceptions to the rule of redundancy for all moving components. However,
the actuation system which controls these componants is redundant.

Pressurization and Propellant Feed Systems

Gaseous helium is used for pressurization, with the gas being stored
at ambient temperature in the SPS and APS, and at cryogenic temperatures
in the DPS. The DPS cryogenic helium storage system takes advantage of
the weight savings possible in the helium storage vessel due to increased
helium density at reduced temperatures, but results in increased compiex-
ity in the pressurization system. In each propulsion system, oxidizer
and fuel tanks are fed from a common pressure regulation assembly to
guarantee equal ullage pressures in the oxidizer and fuel tanks.

A series-parallel valve arrangement is used on the pressure regula-
tion, check valve, and shutoff valve assemblies of each propulsion sys-
tem. In the event a valve should fail open, the zeries arrangement
provides a second valve to shut off flow. Ia the event a valve should
fail closed, the parallel arrangement provides a second flow path for
continued operation. The oxidizer and fuel engine valves are paired so
that each set is mechanically linked and operates from a common actuator
assembly to guarantee the proper relative valve timing during operation.
Trim orifices are located in the propellant feed systems to trim the pro-
pulsion system and to provide the desired mixture ratio and thrust level.

Chamber-Injector Compatibility and Ablation

Chamber-injector compatibility is a major concern when optimum en-
gine efficiency is a design requirement. High performance requires high
combustion temperatures which can result in high ablation rates. High
ablation results in a reduced nozzle area ratio, a performance reduction,
and tlLe requirement for a thicker and heavier ablative chamber. To con-
trol ablation, a barrier of lcw mixture ratio combustion gases is used to
isolate the hot core of combustion gas from the chamber wall. The ser-
vice module engine injector (fig. 19) uses a row of showerhead fuel ori-
fices acent to the chamber wall, while the LEM ascent engine injector
(fig. 20) uses a low mixture ratio unlike-doublet adjacent to the chamber



wall. Because of the unique design of the varisble ares descent engine
injector (fig. 21), no specific portion of the fuel can be considered as
the film coolant.

SERVICE PROPULSION SYSTEM

Operation

The helium pressurization supply is contained in two spher.cal pres-
sure vessels at a nominal pressure of 4(00 psia and ambient teu.erature,
isolated from the fuel and oxidizer tanks during engine shutoff oy two
contimwous duty soienoid operated valves ‘“ig. 22). The valves are con-
trolled individually and are energized open and spring-loaded closed.
Two dual stage regulators, arranged in parallel, are located downstream
of the solenoid valves and provide pressure-regulated helium to the fuel
and oxidizer tanks. Two sets of check valve assemblies, arranged in
series-parallel configurations, prevent fuel or oxidizer from entering
the pressurization system. Pressure relief valves prevent overpressure
in the propellant tanks. This relief is provided when the burst dia-
phragm ruptures and the relief valve opens. The relief valve recloses
when the pressure once again reaches a safe level. A burst diaphragm
is incorporated in each pressure relief valve to provide a more positive
seal than can be obtained with the r:lief valve alone. Heat exchangers
are used in the helium lines to condition the helium to a temperature
approximating that of the propellant in the tanks. Fuel and oxidizer
are each contained in a set of two cylindrical tanks connected in series.
The upstream tank is called the storage tank and the downstream tank is
called the sump tank, each sump tank being directly connected to each
storage tank by a crossover line and standpipe. Each sump tank outlet
contains a zero-gravity retention reservoir which retains propellants
over the propellant feed line inlets and reduces the propellant settling
time requirements., Thrust from the reaction control motors provides for
propellant settling in addition to that maintained by the zero-gravity
retention reservoir. An engine shutoff valve assembly (fig. 23) provides
contrcl of propellants to the engine injector. The shutoff valves are
actuated (fig. 24) by gaseous nitrogen stored at 2800 psia in a vessel
mounted on the shutoff valve housing. Only one set of the series paired
fuel and oxidizer shutoff valves is actuated at any given time during
firing. A spring-loaded, normelly-closed prevalve controls gaseous
nitrogen flow into the valve actuation system. When this prevalve is
opened, prior to an engine start, high pressure gaseous nitrogen i: re-
leased downstream to a two-stage regulator. Pressure regulated nitrogen
is then supp.led to the upstream side of two, three-way solenoid control
valves which, when energized by a thrust-on signal, allow gaseous nitro-
gen to enter the shutoff valve actuation chambers. The two actuators



produce ball valve rotation allowing propellants to flow iato the thrust
chamber. At engine shutdown, the two solenoid control valves are deener-
gized and the pressure in the actuators is vented overboard, allowing the
ball valves to rotate closed. A secondary gaseous nitrogen system and
shutoff valve package provides redundancy and is identical to the system
described above.

DESCENT AND ASCENT PROPULSION EYSTEMS

Descent Propulsion System Operation

Helium for propellant tank pressurization is stored in an insu-
lated vacuum-jacketed, spherical dewar at an initial pressure and tem-
perature of approximately 100 psia and 10° R (fig. 25). Utilizing a
combination of heat leak (heat transfer into the storage vessel) and
standby time (time from loading until system operation), the stored he-
lium gas achieves an operational pressure and temperature of approxi-
mately 1250 psia and 32° R. During the engine start, helium gas is
released from the storage tank by an explosive valve simultaneous with
the initiation of the propellant flow to the engine. (The propelleant
tanks are pressurized to operating conditions prior to launch.) The he-
lium is discharged through the primary pass of a two-pass heat exchanger
which is located externally to the storage vessel and uses fuel as the
heat source. The helium then flows into a second heat exchanger situ-
ated inside the helium storage container. This internal heat exchanger
serves to heat the helium stored in the container in order to aid in
maintaining storage pressure as helium is used. From the internal heat
exchanger, the helium flows through the secondary pass of the external
heat exchanger, through a filter, and then divides into two flow paths,
each of which passes through & normally closed solenoid valve and a dual-
stage pressure regulator. Only one of the four regulator stages normally
functions at any given time with the others providing redundancy. Down-
stream of tne pressure regulators the helium flows into a manifold and
then divides again into two symmetrical paths leading to the fuel and
oxidizer tanks. Each path contains a series-parallel check valve assem-
bly through which the helium must flow prior to entering the diffusers
located in each propellant tank. ILocated downstream of the check ve~
assemblies, a burst disc and pressure relief valve are provided to 1
helium overboard in the event of excessive propellant tank pressure.

The fuel and oxidizer are each stored in two tanks connected in parai.c.,
Separate crossover lines connect the ullage spaces and the lower portions
of each palr of propellant tanks in order to keep the ullage pressures
and propellant levels equalized. Each propellant tank contains baffles
for slosh control.



Start and shutdown is controlled by a series-parallel propellant
shutoff valve assembly (figs. 26 and 27). The shutoff velves are mechan-
ically linked, fuel-actuated ball valves. Fuel for valve actuation is
sontrolled by solenoid operated pilot valves which are opened simultan-
eously at engine startup. In the open position, the pilot valve poppets
seal the vent ports and allow pressurized fuel into the tctuators which
open the main propellant valves. For engine shutaown, p:iiot vuive soule-
noids are deenergized allowing the valve springs to close the supply
ports and open the vent ports. The pressure in the actuation chamber is
relieved and the spring loaded actuators return to the closed position,
expelling the fuel from the actuation chamber overboard through the vent
lines.

For throttling, a variable area concentric injector is mechanically
linked and actuated in conjunction with cavitating venturi type flow con-
trol valves (fig. 28). When down throttling (fig. 29), the throttle
actuator simulteneously reduces the flow area of the propellant flow
control valves and moves the injector orifice urea so that the desired
injection velocity is maintained as propellant flow is reduced. Below
70 percent thrust, cavitaticn occurs in the flow control valves which
allows the propellant flow to be controlled independent of pressure
changes downstream of the control valve. Engine start and shutdown can
be accomplished at any engine thrust setting desire.

Ascent Propulsion System Operation

Helium for pressurization is stored in two spherical tanks at ambie
ent temperature and 3500 psia (fig. 30). Each tank is sealed by an ex-
plosive shutoff valve and is filled through a separate coupling. Prior
to the first engine start, the explosive valves release helium from the
storage tanks. The two gas streams flow to a junction and divide into
two symmetrical branches, each containing a filter, a latching solenoid
shutoff valve, and a pressure regulating valve. Each pressure reguia-
ting valve contains two stages, essantially identical except for output
pressure settings. Only one of the four independent reducing stages
normally functions, the others providing redundancy. After entering a
comaon outlet line, the helium flows via separate paths through series-
parallel check valve assemblies to the fuel and oxidizer tanks. A burst
aisc and a pressw:e relief valve are located in each line between the
check valve +d propellant tanks to prevent overpressurizing the tanks.
Each propellant is stored in a single spherical tank which includes a
helium diffuser. an anti-vorte:: dev.ce, baffles, and a low-level sensor.
Each propelilant flows from the tank through a trim orifice and fiiter,
and enters the engine through a fuel-actuated series-parallel bipropel-
lant shutoff valve assembly (fig. 31). To start the engine, the pilot
valves are energized, admitting pressurized fuel to the valve actuators



-~

which rotate the ball v'>ves to the open pocitior. When tke pilot valves
are deenergized, the fu in the valve actuation chambers is veated over-
board allowing the ball valves to rotate to the closed position.



TASLE I.- AFOLLO SPACECRAFT ENGINE SPECIFICATIONS

Component Service mogdule LEM descent LEM4 ascent
Engine
Manufacturer Aerojet-general TRW systems Bell amerosystems
Thrust, 1b 21 500 10 500 to 1050 3500
{ixture ratio 2.0 1.6 1.6
Chamber pressure, psia 100 110 to 11 120
Propellants Fuel: 50/50 blend of UDMH and hydrazine; oxidizer: K0,
Chamber and Nozzle Ablative Ablative Ablative
Material Hi silica/phenolic Hi silica/phenolic Hi silica/phenolic
Extansion Padiation cooled from Radiation cooled Ablative
Ae/At = 6 through 62.5 from Ae/At = 16
through 47.4
Material Columbiwm from Columbium Asbestos micrcballoon
Ae/At = 6 through 40
Titanium from
Ae/At = 4O through 2.5
Injector
Type Concave/baffled Coaxial/variable Frat/baffled
area
Material Aluminum Inconel Aluminum
Pattern Unlike doublet Fuel sheet/rudial Triplet - 2 fuel,
oxidizer 1 oxidizer
Film ~ooling 7 percent of wf‘uel None 20 percent of wtot al
Type Showerhead NA Unlike doubiet
System pressures
Tanks, psia 175 225 190
Irterface, psia 165 210 165
injector drop Oxidizer LL; fuel 47 psia Vuriable 28
Chamber, psia 100 110 to 11 120
L




TABLE I.~ APOLLO SPACECRAFT ENGINE SPECIFICATIONS - Concluded

Component Service module LEM descent LEM ascent

Lunar mission

Total burn time, sec 500 1030 L65

ro
n

Number starts 8

Approximate dimensions

Overall length, in. 153 85 51
Dry we:rght, 1b €650 350 210
L*-char. length 3L 26 24
Contour, percent bell 70 67 T2
Ae/At 62 b7 Lé
Maximum chamber 18 14 8
diameter, in.
Thros . diameter, in. w2 8 5
Exit diameter, in. 98 58 31
Throat area, in.% 122 Sh 16
Exit ares, in.2 7595 2664 750
Thrust vector control Gimballed Gimballed None

$8.5° pisch; #6° yaw +6° pitch; $+6° yaw
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SERVICE PROPULSION SYSTEM

Figure 5. - Service propulsicn system



SPS ROCKET ENG!NE

AJ10-137

GIMBAL

PLANE__\

)

152, 82"

111. 82

98 48" — il

Figure 6.- SPS engine
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Figure 7. - Lunar excursion module
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Figure 8. - Descent and ascent engines as installed in LEM
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NOTE:

1 AFT INTERSTAGE FITTING

2 FUEL TANK

3 ENGINE AOUNT

4 DESCENT ENGINE

5. STRUCTURAL SKiN

6 INSULATON

7 THERMAL SHIELD

8 FORWARD INTERSTAGE FITTING
9 OXIDIZER TANK

10 SCIENTIFIC EQUIPMENT BAY
11 FUEL TANK

12 WATER TANK

13 HELIUM TANK

LANDING GEAR SHOWN IN
RETRACTED POSITION

14 LANDIN' RADAR ANTENNA
15 DESCENTY ENGINE SKIRT

16 §NISS ASSEMULY

17. SECONDARY STRUT

18 PAD

19. PRUMARY STRUT

20. LOCK ASSEMMLY

21. GIMBAL RING

22. OYYGEN TANK

23 ADAPTER ATTACHMENT POINT
24 OUTRIGGER

25. OXIDIZER TANK

26. HYDROGEN TANK

Figure 9. - Descent stage
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1 INERTIAL MEASURING uNIT

2 UPPER HATCH

3 MIDSECTION

4 TUTL TANX {RCS)

5 HELIUM PRESSURE
REGULATING MODULE

6. AFT EQUIPAENT BAY

7 MELIUM TANK (RCS)

R OXIDIZER TANK (RCS)

9. FLEL TANK

10 ASCENT ENGINE COVER

11. CREW COMPARTMENT

12. FORWARD INTERSTAGE FITTING
13. FORWARD HATCH

14. Wit JDOW

15, ALIGNMENY OPTICAL TELLSCOPE

Figure 10. - Ascent stage
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Figure 12, - LEM ascent engiae
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Figure 30.- Ascent engine pressurization and propellant system
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Figure 31. - Ascent engine flow contro!



